# Influence of an Epoxy Reactive Diluent on the Thermal Degradation Process of the System DGEBA n = 0/1,2 DCH

#### Lisardo Núñez, M. Villanueva, M. R. Núñez, B. Rial

Research Group TERBIPROMAT, Departamento de Física Aplicada, Facultade de Física, Universidade de Santiago de Compostela, Campus Sur, 15706, Santiago, Spain

Received 25 January 2003; accepted 20 October 2003

**ABSTRACT:** The thermal degradation of two epoxy systems diglycidyl ether of bisphenol A (DGEBA n = 0)/1,2diamine cyclohexane (DCH) containing different concentrations of an epoxy reactive diluent, vinylcyclohexene dioxide (VCHD), was studied by thermogravimetric analysis to determine the reaction mechanism of the degradation process for these two systems. Values of the activation energy, necessary for this study, were calculated by using various integral and differential methods. Values obtained by using the different methods were compared to the value obtained by Kissinger's method, which does not require a knowledge of the reaction mechanism. All the experimental results were compared to master curves in the range of Doyle's approximation (20–35% of conversion). Analysis of the results suggests that the two reaction mechanisms are  $R_n$  and  $F_n$  deceleratory type in contrast with the sigmoidal  $A_2$  type of the system with filler and the sigmoidal  $A_4$  type of the system without additives. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1199–1207, 2004

**Key words:** thermogravimetry; epoxy resins; epoxy reactive diluent; activation energy; reaction mechanisms

#### INTRODUCTION

Thermosets are materials with low tensile and storage moduli. For many end uses, it is necessary to add other components to the resin to improve its properties. One of these components is diluents, such as vinylcyclohexene dioxide (VCHD), which do not change significantly the kinetic parameters but vary the mechanical properties, the lifetime, and the thermal degradation kinetics.<sup>1</sup>

Because the behavior of thermosets is affected by the addition of diluents, it is important to investigate the changes taking place during the thermal degradation of these materials. The study of the degradation of a polymer is important because it can determine the upper temperature limit, the mechanism of a solidstate process, and the lifetime for a thermoset.

The main objective of this work was to study the kinetics of thermal degradation of an epoxy resin containing an epoxy reactive diluent (VCHD) in nonisothermal conditions. The results of this study were compared with those of the same epoxy system but without diluent.

#### **Kinetic methods**

Thermal gravimetry (TG) nonisothermal experiments register the change of the sample mass as a function of

temperature. Kinetic parameters can be extracted from nonisothermal experiments.

The degree of conversion can be expressed as

$$\alpha = \frac{m_0 - m}{m_0 - m_\infty} \tag{1}$$

where *m* is the measured experimental mass at temperature *T*,  $m_0$  is the initial mass, and  $m_\infty$  is the mass at the end of nonisothermal experiments.

The rate of conversion,  $d\alpha/dt$ , is a linear function of a temperature-dependent rate constant, k, and a temperature-independent function of conversion,  $\alpha$ , that is,

$$\frac{d\alpha}{dt} = kf(\alpha) \tag{2}$$

Substituting Arrhenius equation into eq. (2), one obtains

$$\frac{d\alpha}{dt} = Af(\alpha)e^{(E/RT)}$$
(3)

If the temperature of the sample is changed by a controlled and constant heating rate,  $\beta = dT/dt$ , the variation in the degree of conversion can be analyzed as a function of temperature, this temperature being dependent on the time of heating.

Therefore, the reaction rate gives

Correspondence to: L. Núñez (falisar1@uscmail.usc.es).

Journal of Applied Polymer Science, Vol. 92, 1199–1207 (2004) © 2004 Wiley Periodicals, Inc.

| Algebraic | E Expressions for $g(\alpha)$ for t | TABLE I<br>he Most Frequently Used |
|-----------|-------------------------------------|------------------------------------|
| Symbol    | $g(\alpha)$                         |                                    |

| Symbol           | $g(\alpha)$                             | Solid-state processes                                         |
|------------------|-----------------------------------------|---------------------------------------------------------------|
|                  | Sigm                                    | noidal curves                                                 |
| $A_2$            | $[-\ln(1-\alpha)]^{1/2}$                | Nucleation and growth (Avrami eq. 1)                          |
| $\overline{A_3}$ | $[-\ln(1-\alpha)]^{1/3}$                | Nucleation and growth (Avrami eq. 2)                          |
| $A_4$            | $[-\ln(1-\alpha)]^{1/4}$                | Nucleation and growth (Avrami eq. 3)                          |
|                  | Decele                                  | eration curves                                                |
| $R_1$            | α                                       | Phase boundary controled reaction (one-dimensional movement)  |
| $R_2$            | $[1-(1-\alpha)^{1/2}]$                  | Phase boundary controled reaction (contracting area)          |
| $R_3$            | $[1-(1-\alpha)^{1/3}]$                  | Phase boundary controled reaction (contracting volume)        |
| $D_1$            | $\alpha^2$                              | One-dimensional diffusion                                     |
| $D_2$            | $(1 - \alpha) \ln(1 - \alpha) + \alpha$ | Two-dimensional diffusion                                     |
| $\overline{D_3}$ | $[1-(1-\alpha)^{1/3}]^2$                | Three-dimensional diffusion (Jander equation)                 |
| $D_4$            | $(1 - 2/3\alpha) - (1 - \alpha)^{2/3}$  | Three-dimensional diffusion (Ginstling–Brounshtein equation)  |
| $F_1$            | $-\ln(1-\alpha)$                        | Random nucleation with one nucleus on the individual particle |
| $F_2$            | $1/(1 - \alpha)$                        | Random nucleation with two nuclei on the individual particle  |
| $F_3$            | $1/(1 - \alpha)^2$                      | Random nucleation with two nuclei on the individual particle  |

$$\frac{d\alpha}{dT} = \frac{A}{\beta} e^{(E/RT)} f(\alpha) \tag{4}$$

Integration of this equation from an initial temperature,  $T_0$ , corresponding to a null degree of conversion, to the peak temperature of the derivative thermogravimetric curve (DTG),  $T_p$ , where  $\alpha = \alpha_p$  gives<sup>2</sup>

$$g(\alpha) = \int_{0}^{\alpha_{p}} \frac{d\alpha}{f(\alpha)} = \frac{A}{\beta} \int_{0}^{T_{a}} e^{(E/RT)} dT$$
(5)

where  $g(\alpha)$  is the integral function of conversion.

In the case of polymers, this integral function,  $g(\alpha)$ , is either a sigmoidal function or a deceleration function. Table I shows different expressions of  $g(\alpha)$  for the different solid-state mechanisms.<sup>3–6</sup> These functions were satisfactorily employed for the estimation of the reaction solid-state mechanism from nonisothermal TG experiments.<sup>7</sup>

### **Differential method**

Analysis of the changes in thermogravimetric data brought about by variations of the heating rate,  $\beta$ , are the basis of the most powerful differential methods for the determination of kinetic parameters. In this article, the Kissinger's method<sup>8</sup> was used.

#### **Integral methods**

The integral methods involve an approximate integration of eq. (5). Some of these methods discussed in the present article are Flynn–Wall–Ozawa,<sup>9,10</sup> Coats–Redfern,<sup>11</sup> Van Krevelen,<sup>12</sup> and Horowitz–Metzger.<sup>13</sup>

## Criado et al.<sup>4</sup> method for determination of reaction mechanism

Mechanisms of Solid-State Processes

The activation energy of a solid-state reaction can be determined from several nonisothermal measurements whatever the reaction mechanism. If the value of the activation energy is known, the kinetic model of the process can be found defining a function

$$Z(\alpha) = \frac{(d\alpha/dt)}{\beta} \Pi(x)T$$
(6)

where x = E/RT and  $\Pi(x)$  is an approximation of the temperature integral which cannot be expressed in a simple analytical form. In this study, we used the fourth rational expression of Senum and Yang,<sup>14</sup> which gives errors of lower than  $10^{-5}\%$  for x = 20.

A combination of eqs. (2) and (6) gives

$$Z(\alpha) = f(\alpha)g(\alpha) \tag{7}$$

This last equation was used to obtain the master curves as a function of the reaction degree corresponding to the different models listed in Table I.

Plotting the  $Z(\alpha)$  function calculated by using both experimental data and eq. (6), and comparing with the master curves, leads to easy and precise determination of the mechanisms of the solid-state processes.

#### **EXPERIMENTAL**

#### Materials

The epoxy resin was a commercial diglycidyl ether of bisphenol A (DGEBA; n = 0; Resin 332, Sigma Chemical Co., St. Louis, MO, USA) and the epoxy reactive diluent was VCHD (Fluka, Buchs, Switzerland), with equivalent molecular weights of 173.6 and 71.25 g/Eq,



**Figure 1** Experimental TG curves at the various heating rates used in this study for the (a) DGEBA (n = 0)/1,2 DCH/15% VCHD (nonstoich.) and (b) DGEBA (n = 0)/1,2 DCH/15% VCHD (stoich.) systems.

respectively, as determined by wet analysis.<sup>15,16</sup> The curing agent was 1,2-diaminecyclohexane (DCH; Fluka), with an amine hydrogen weight of 28.5.

#### Sample preparation

Epoxy resin and reactive diluent were carefully and homogeneously mixed, at the proportion in weight of diluent 15% of the total mass of the composed system, before adding the hardener. Then, the amounts of curing agent were added depending on the designed system. For the system noted as 15% VCHD (stoich.),

TABLE II Inflection Point Temperature at Different Heating Rates

|            | Т                | nflection point(°C)     |                      |
|------------|------------------|-------------------------|----------------------|
| β (°C/min) | 0% <sup>21</sup> | 15%<br>Nonstoichiometry | 15%<br>Stoichiometry |
| 5          | 343.76           | 357.51                  | 357.37               |
| 15         | 368.75           | 378.75                  | 373.75               |
| 25         | 376.25           | 381.25                  | 373.24               |
| 35         | 383.75           | 385.00                  | 384.18               |
| 45         | 390.00           | 386.25                  | 392.00               |

| %VCHD               | 5°C/min | 15°C/min | 25°C/min | 35°C/min | 45°C/min |
|---------------------|---------|----------|----------|----------|----------|
| 0                   | 7.60    | 6.51     | 7.31     | 6.13     | 5.22     |
| 15 Nonstoichiometry | 5.88    | 5.00     | 5.60     | 5.00     | 5.00     |
| 15 Stoichiometry    | 4.60    | 4.42     | 4.06     | 3.63     | 3.37     |

a stoichiometric amount of curing agent was added, taking into account the excess of epoxy introduced by the diluent. For the system noted as 15% VCHD (nonstoich.), the epoxy excess introduced by the reactive diluent was not taken into account, so it was not compensated. Finally, the sample was introduced in a cylindrical frame.

For these 15% VCHD (stoich.) and 15% VCHD (nonstoich.) systems, the curing reactions were programmed according to the TTT diagrams calculated in our premises for the DGEBA (n = 0)/1,2 DCH/15% VCHD stoichiometric system and for the DGEBA (n = 0)/1,2 DCH system,<sup>17</sup> respectively.

These curing reactions were 35 min at 120°C in a stove for the 15% VCHD (stoich.); or a first step 24 h at 23°C and a second one 16 h at 70°C in a stove, for the 15% VCHD (nonstoich.).

For thermogravimetric analysis, the samples were cut in the form of 15–25 mg in weight and 6 mm in diameter discs.

Thermogravimetric analysis was performed by using a thermogravimetric analyzer (TGA7) from Perkin–Elmer controlled by a 1020 computer. This microbalance was calibrated making use of the discontinuous change in the magnetic properties of perkalloy and alumel on heating. The Curie point of each alloy was calculated by the microbalance which was calibrated at different heating rates.

The system was operated in the dynamic mode in the temperature range 100–900°C, at different heating rates of 5, 15, 25, 35, and 45°C/min.

All the experiments were carried out under a dry nitrogen atmosphere. The TGA7 analyzer requires two purge lines: one to purge the balance chamber and a second one to purge the sample-furnace area. After various experiments, it was found that the optimum gas flow rates were 25 mL/min for the balance purge gas and 35 mL/min for the sample purge gas.

#### **RESULTS AND DISCUSSION**

Figure 1(a, b) shows the thermal degradation curves corresponding to dynamic experiments carried out at different heating rates (5, 15, 25, 35, and 45°C/min), for the nonstoichiometric and stoichiometric systems, respectively. These curves are C-type,<sup>4</sup> which correspond to a one-stage decomposition reaction where the procedural decomposition temperatures (initial

and final) are well defined. The step is due to the thermal degradation of the epoxy resin. The inflection point temperature corresponding to the first step,  $T_m$ , can be determined from the minimum of the derivative of these curves, and the residual mass can be measured from these TG curves after complete degradation. Tables II and III show the inflection point temperatures of the first step,  $T_m$ , and the residual mass, at different heating rates, respectively, for the system without diluent, the nonstoichiometric, and the stoichiometric. Analysis of Table II shows that the inflection temperatures are very similar for the three epoxy systems: the differences being within the 5% of error allowed by the IUPAC. However, there are significant differences in the residue values. The highest values correspond to the system without diluent and the lowest values were obtained for the system with the stoichiometric ratio of diluent. It can be seen that, in all the cases, the residual mass is nearly independent of the heating rate.

Owing to the thermodegradation behavior of the epoxy systems here studied, we have chosen 10°C/ min heating rate intervals, instead of 5°C/min intervals used by some authors,<sup>18,19</sup> to avoid the overlapping of inflection point temperatures. This same procedure was followed in the study of the epoxy system without filler.

By using the Kissinger equation<sup>8</sup> and the inflection point temperature corresponding to the thermograms shown in Figure 1, the activation energies were calcu-

| TABLE IV                                            |
|-----------------------------------------------------|
| Activation Energies Obtained Using Flynn–Wall–Ozawa |
| Method                                              |

| α    | %VCHD               | $E_a \pm s(E_a)$ (kJ mol <sup>-1</sup> ) | R      |
|------|---------------------|------------------------------------------|--------|
| 0.20 | 15 Nonstoichiometry | $201.10 \pm 14.55$                       | 0.9922 |
|      | 15 Stoichiometry    | $157.91 \pm 6.70$                        | 0.9973 |
| 0.23 | 15 Nonstoichiometry | $206.70 \pm 14.01$                       | 0.9932 |
|      | 15 Stoichiometry    | $161.01 \pm 7.13$                        | 0.9971 |
| 0.26 | 15 Nonstoichiometry | $212.38 \pm 14.19$                       | 0.9934 |
|      | 15 Stoichiometry    | $164.39 \pm 7.61$                        | 0.9968 |
| 0.29 | 15 Nonstoichiometry | $217.20 \pm 14.01$                       | 0.9938 |
|      | 15 Stoichiometry    | $166.94 \pm 8.14$                        | 0.9964 |
| 0.32 | 15 Nonstoichiometry | $219.95 \pm 13.28$                       | 0.9946 |
|      | 15 Stoichiometry    | $169.34 \pm 8.78$                        | 0.9960 |
| 0.35 | 15 Nonstoichiometry | $222.64 \pm 13.64$                       | 0.9944 |
|      | 15 Stoichiometry    | $171.97\pm9.34$                          | 0.9956 |

TABLE V Activation Energies Obtained Using Coats-Redfern Method for Several Solid-State Processes at a Heating Rate of 5°C/min

|                  | 15% VCF                       | łD     |                               |        |
|------------------|-------------------------------|--------|-------------------------------|--------|
|                  | Nonstoic                      | h.     | 15% VCHD Stoich.              |        |
| Mechanism        | $E_a$ (kJ mol <sup>-1</sup> ) | R      | $E_a$ (kJ mol <sup>-1</sup> ) | R      |
| A <sub>2</sub>   | 101.50                        | 0.9993 | 97.53                         | 0.9985 |
| $\bar{A_3}$      | 64.12                         | 0.9993 | 61.47                         | 0.9984 |
| $A_4$            | 45.42                         | 0.9992 | 43.45                         | 0.9981 |
| $R_1$            | 180.16                        | 0.9987 | 173.36                        | 0.9977 |
| $R_2$            | 196.43                        | 0.9991 | 189.08                        | 0.9982 |
| $R_3$            | 202.07                        | 0.9992 | 194.53                        | 0.9984 |
| $D_1$            | 370.97                        | 0.9979 | 357.38                        | 0.9978 |
| $D_2$            | 392.05                        | 0.9988 | 377.75                        | 0.9985 |
| $\overline{D_3}$ | 414.79                        | 0.9990 | 399.72                        | 0.9985 |
| $D_4$            | 399.61                        | 0.9993 | 385.07                        | 0.9983 |
| $F_1$            | 213.66                        | 0.9991 | 205.73                        | 0.9987 |
| $F_2$            | 60.17                         | 0.9994 | 57.77                         | 0.9984 |
| $\bar{F_3}$      | 130.99                        | 0.9967 | 136.42                        | 0.9988 |

lated from a plot of  $\ln(\beta/T_{max}^2)$  versus  $1000/T_{max}$  and fitting to a straight line. The activation energies obtained by using this method were 237.61 ± 36.83 and 211.60 ± 37.99 kJ/mol, for the nonstoichiometric and stoichiometric systems, respectively. Both values are within the confidence interval and are greater than the value (144.01 ± 17.69 kJ/mol) calculated for the system without diluent.<sup>20</sup>

The activation energy can also be determined by using the method of Flynn–Wall–Ozawa,<sup>9,10</sup> from a linear fitting of ln  $\beta$  versus 1000/*T* at different conversions. Owing to the fact that this equation was derived by using the Doyle approximation,<sup>21</sup> only conversion values in the range of 5–35% were used. For the present study, we have used conversion values 20, 23,

TABLE VI Activation Energies Obtained Using Coats-Redfern Method for Several Solid-State Processes at a Heating Rate of 15°C/min

Ν

 $F_3$ 

130.99

|             | Kate 0                        | 1 15 C/m | m                             |         |
|-------------|-------------------------------|----------|-------------------------------|---------|
|             | 15% VCF<br>Nonstoic           | HD<br>h. | 15% VCHD 9                    | Stoich. |
| lechanism   | $E_a$ (kJ mol <sup>-1</sup> ) | R        | $E_a$ (kJ mol <sup>-1</sup> ) | R       |
| $A_2$       | 101.50                        | 0.9993   | 97.53                         | 0.9985  |
| $A_3$       | 64.12                         | 0.9993   | 61.47                         | 0.9984  |
| $A_4$       | 45.42                         | 0.9992   | 43.45                         | 0.9981  |
| $R_1$       | 180.16                        | 0.9987   | 173.36                        | 0.9977  |
| $R_2$       | 196.43                        | 0.9991   | 189.08                        | 0.9982  |
| $R_3^-$     | 202.07                        | 0.9992   | 194.53                        | 0.9984  |
| $D_1$       | 370.97                        | 0.9979   | 357.38                        | 0.9978  |
| $D_2$       | 392.05                        | 0.9988   | 377.75                        | 0.9985  |
| $\bar{D_3}$ | 414.79                        | 0.9990   | 399.72                        | 0.9985  |
| $D_4$       | 399.61                        | 0.9993   | 385.07                        | 0.9983  |
| $F_1$       | 213.66                        | 0.9991   | 205.73                        | 0.9987  |
| F           | 60.17                         | 0 9994   | 57 77                         | 0 9984  |

0.9967

136.42

0.9988

TABLE VII Activation Energies Obtained Using Coats-Redfern Method for Several Solid-State Processes at a Heating Rate of 25°C/min

|                  | 15% VCHD<br>Nonstoich.        |        | 15% VCHD 9                    | Stoich. |
|------------------|-------------------------------|--------|-------------------------------|---------|
| Mechanism        | $E_a$ (kJ mol <sup>-1</sup> ) | R      | $E_a$ (kJ mol <sup>-1</sup> ) | R       |
| A <sub>2</sub>   | 116.23                        | 0.9964 | 107.95                        | 0.9974  |
| $\overline{A_3}$ | 73.89                         | 0.9960 | 68.37                         | 0.9971  |
| $A_4$            | 52.73                         | 0.9956 | 48.58                         | 0.9967  |
| $R_1$            | 205.16                        | 0.9952 | 191.11                        | 0.9963  |
| $R_2$            | 223.66                        | 0.9960 | 208.39                        | 0.9970  |
| $R_3$            | 230.07                        | 0.9962 | 214.38                        | 0.9972  |
| $D_1$            | 421.10                        | 0.9954 | 393.02                        | 0.9965  |
| $D_2$            | 445.07                        | 0.9959 | 415.41                        | 0.9969  |
| $D_3$            | 470.93                        | 0.9964 | 439.54                        | 0.9974  |
| $D_4$            | 453.66                        | 0.9961 | 423.45                        | 0.9971  |
| $F_1$            | 243.25                        | 0.9967 | 226.69                        | 0.9976  |
| $F_2$            | 69.77                         | 0.9993 | 64.44                         | 0.9994  |
| $\overline{F_3}$ | 150.32                        | 0.9994 | 149.98                        | 0.9995  |

26, 29, 32, and 35%. Activation energies corresponding to the different conversions are listed in Table IV. These activation energy values give mean values of 213.33  $\pm$  6.10 and 165.26  $\pm$  9.57 kJ/mol for the non-stoichiometric and stoichiometric systems, respectively.

Compared to others, these two methods present the advantage that they do not require the previous knowledge of the reaction mechanism for determining the activation energy. Some authors<sup>5,18</sup> used the activation energies obtained by using these two methods to check their thermodegradation mechanism models. In this work, the Flynn–Wall–Ozawa energy values were considered as references to compare with those obtained through the different integral methods cited

TABLE VIII Activation Energies Obtained Using Coats-Redfern Method for Several Solid-State Processes at a Heating Rate of 35°C/min

|                  | 15% VCF<br>Nonstoic                      | łD<br>h. | 15% VCHD 9                    | Stoich. |
|------------------|------------------------------------------|----------|-------------------------------|---------|
| Mechanism        | $\overline{E_a}$ (kJ mol <sup>-1</sup> ) | R        | $E_a$ (kJ mol <sup>-1</sup> ) | R       |
| $A_2$            | 120.43                                   | 0.9980   | 106.21                        | 0.9972  |
| $\overline{A_3}$ | 76.68                                    | 0.9978   | 67.16                         | 0.9969  |
| $A_4$            | 54.80                                    | 0.9975   | 47.62                         | 0.9965  |
| $R_1$            | 212.40                                   | 0.9970   | 188.28                        | 0.9961  |
| $R_2$            | 231.48                                   | 0.9976   | 205.33                        | 0.9968  |
| $\bar{R_3}$      | 238.09                                   | 0.9978   | 211.24                        | 0.9970  |
| $D_1$            | 435.61                                   | 0.9972   | 387.52                        | 0.9963  |
| $D_2$            | 460.34                                   | 0.9976   | 409.62                        | 0.9968  |
| $\overline{D_3}$ | 487.00                                   | 0.9979   | 433.45                        | 0.9972  |
| $D_4$            | 469.20                                   | 0.9977   | 417.55                        | 0.9969  |
| $F_1$            | 251.68                                   | 0.9981   | 223.40                        | 0.9975  |
| $F_2$            | 72.24                                    | 0.9984   | 63.29                         | 0.9994  |
| $F_3$            | 155.31                                   | 0.9986   | 148.04                        | 0.9996  |

|                  | Kate 0                        | 1 45 C/III | 111                                      |        |
|------------------|-------------------------------|------------|------------------------------------------|--------|
|                  | 15% VCHD<br>Nonstoich.        |            | 15% VCHD Stoich.                         |        |
| Mechanism        | $E_a$ (kJ mol <sup>-1</sup> ) | R          | $\overline{E_a}$ (kJ mol <sup>-1</sup> ) | R      |
| A <sub>2</sub>   | 159.71                        | 0.9965     | 120.54                                   | 0.9986 |
| $\bar{A_3}$      | 102.83                        | 0.9963     | 76.70                                    | 0.9984 |
| $A_4$            | 74.38                         | 0.9960     | 54.77                                    | 0.9982 |
| $R_1$            | 279.19                        | 0.9953     | 212.74                                   | 0.9977 |
| $R_2$            | 304.06                        | 0.9961     | 231.85                                   | 0.9982 |
| $R_3$            | 312.68                        | 0.9963     | 238.47                                   | 0.9984 |
| $D_1$            | 569.35                        | 0.9955     | 436.47                                   | 0.9978 |
| $D_2$            | 601.56                        | 0.9960     | 461.23                                   | 0.9981 |
| $\overline{D_3}$ | 636.31                        | 0.9965     | 487.94                                   | 0.9985 |
| $D_4$            | 613.12                        | 0.9961     | 470.12                                   | 0.9983 |
| $F_1$            | 330.39                        | 0.9968     | 252.09                                   | 0.9987 |
| $F_2$            | 97.31                         | 0.9997     | 72.21                                    | 0.9985 |
| $\bar{F_3}$      | 205.57                        | 0.9998     | 165.88                                   | 0.9899 |

| TABLE IX                                              |
|-------------------------------------------------------|
| Activation Energies Obtained Using Coats-Redfern      |
| Method for Several Solid-State Processes at a Heating |
| Rate of 45°C/min                                      |

before. The Flynn–Wall–Ozawa results were considered because the Kissinger method takes only one point of the thermodegradation curve, whereas the Flynn–Wall–Ozawa method takes different points corresponding to different conversion values.

By using the equation proposed by Coats and Redfern,<sup>11</sup> the activation energy for every  $g(\alpha)$  listed in Table I can be obtained at constant heating rates from fitting of  $\ln[g(\alpha)/T^2]$  versus 1000/T plots. For this study, we have used the same conversion values as those used in the previous methods. Tables V-IX show activation energies and correlations for values in the range 5–35% at constant heating rate values of 5, 15, 25, 35, and 45°C/min, respectively. Analysis of these tables show that, at all the heating rate values and for the two systems with diluent, the activation energies in better agreement with those obtained using the Flynn–Wall–Ozawa method correspond to  $R_n$  and  $F_n$ type mechanisms. These facts suggest that the solidstate thermodegradation mechanism followed by our epoxy systems are deceleratory type, whereas for the system without diluent,<sup>20</sup> the solid-state thermodegradation mechanism was a sigmoidal-type  $(A_4)$ .

To confirm this deceleratory behavior, we have calculated activation energies and correlations by using Van Krevelen<sup>12</sup> and Horowitz–Metzger<sup>13</sup> models. The

| TABLE X                                                                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------|
| Activation Energies Obtained Using Van Krevelen Method for R <sub>n</sub> and F <sub>n</sub> Solid-State Processes at Different |
| Heating Rates                                                                                                                   |

| β (°C/min) | Mechanism        | 15% VCHD Nonstoich.           |        | 15% VCHD Stoich.                       |        |
|------------|------------------|-------------------------------|--------|----------------------------------------|--------|
|            |                  | $E_a$ (kJ mol <sup>-1</sup> ) | R      | $\overline{E_a \text{ (kJ mol}^{-1})}$ | R      |
| 5          | $R_1$            | 180.68                        | 0.9994 | 149.25                                 | 0.9983 |
|            | $R_2^{1}$        | 196.52                        | 0.9996 | 162.44                                 | 0.9987 |
|            | $\bar{R_3}$      | 202.00                        | 0.9997 | 167.01                                 | 0.9989 |
|            | $F_1$            | 213.28                        | 0.9998 | 176.41                                 | 0.9991 |
|            | $F_2$            | 63.67                         | 0.9969 | 52.17                                  | 0.9985 |
|            | $\bar{F_3}$      | 132.59                        | 0.9969 | 109.59                                 | 0.9985 |
| 15         | $R_1$            | 188.69                        | 0.9988 | 180.29                                 | 0.9978 |
|            | $R_2$            | 205.25                        | 0.9991 | 196.16                                 | 0.9989 |
|            | $\overline{R_3}$ | 210.98                        | 0.9992 | 201.65                                 | 0.9989 |
|            | $F_1$            | 222.77                        | 0.9994 | 212.95                                 | 0.9987 |
|            | $F_2$            | 66.65                         | 0.9979 | 63.68                                  | 0.9989 |
|            | $\bar{F_3}$      | 138.72                        | 0.9979 | 132.75                                 | 0.9989 |
| 25         | $R_1$            | 212.44                        | 0.9955 | 195.63                                 | 0.9965 |
|            | $R_2$            | 231.11                        | 0.9962 | 212.83                                 | 0.9971 |
|            | $R_3$            | 237.58                        | 0.9964 | 218.79                                 | 0.9973 |
|            | $F_1$            | 250.89                        | 0.9968 | 231.06                                 | 0.9977 |
|            | $F_2$            | 75.85                         | 0.9995 | 69.54                                  | 0.9996 |
|            | $F_3$            | 157.14                        | 0.9995 | 144.46                                 | 0.9996 |
| 35         | $R_1$            | 218.98                        | 0.9977 | 193.05                                 | 0.9963 |
|            | $R_2$            | 238.16                        | 0.9979 | 210.05                                 | 0.9970 |
|            | $R_3$            | 244.81                        | 0.9972 | 215.93                                 | 0.9972 |
|            | $F_1$            | 258.48                        | 0.9989 | 228.04                                 | 0.9975 |
|            | $F_2$            | 78.09                         | 0.9989 | 68.54                                  | 0.9996 |
|            | $F_3$            | 161.62                        | 0.9989 | 142.54                                 | 0.9996 |
| 45         | $R_1$            | 284.80                        | 0.9955 | 219.44                                 | 0.9978 |
|            | $R_2$            | 309.68                        | 0.9962 | 238.67                                 | 0.9983 |
|            | $R_3$            | 318.31                        | 0.9965 | 245.32                                 | 0.9984 |
|            | $F_1$            | 336.03                        | 0.9969 | 259.02                                 | 0.9987 |
|            | $F_2$            | 102.85                        | 0.9998 | 78.16                                  | 0.9990 |
|            | $F_3$            | 211.18                        | 0.9998 | 161.85                                 | 0.9990 |

| β (°C/min) | Mechanism        | 15% VCHD Nonstoich.           |        | 15% VCHD Stoich.                       |        |  |  |  |  |
|------------|------------------|-------------------------------|--------|----------------------------------------|--------|--|--|--|--|
|            |                  | $E_a$ (kJ mol <sup>-1</sup> ) | R      | $\overline{E_a \text{ (kJ mol}^{-1})}$ | R      |  |  |  |  |
| 5          | $R_1$            | 187.89                        | 0.9993 | 157.22                                 | 0.9982 |  |  |  |  |
|            | $R_2$            | 203.90                        | 0.9996 | 170.64                                 | 0.9986 |  |  |  |  |
|            | $\overline{R_3}$ | 209.45                        | 0.9996 | 175.29                                 | 0.9987 |  |  |  |  |
|            | $F_1$            | 220.85                        | 0.9997 | 184.86                                 | 0.9990 |  |  |  |  |
|            | $F_2$            | 69.67                         | 0.9971 | 58.44                                  | 0.9986 |  |  |  |  |
|            | $\bar{F_3}$      | 139.33                        | 0.9971 | 116.89                                 | 0.9986 |  |  |  |  |
| 15         | $R_1$            | 197.46                        | 0.9986 | 187.32                                 | 0.9976 |  |  |  |  |
|            | $R_2$            | 214.31                        | 0.9990 | 203.34                                 | 0.9982 |  |  |  |  |
|            | $\overline{R_3}$ | 220.14                        | 0.9991 | 208.88                                 | 0.9983 |  |  |  |  |
|            | $F_1$            | 232.14                        | 0.9993 | 220.29                                 | 0.9986 |  |  |  |  |
|            | $F_2$            | 73.33                         | 0.9981 | 69.70                                  | 0.9990 |  |  |  |  |
|            | $\bar{F_3}$      | 146.66                        | 0.9981 | 139.40                                 | 0.9990 |  |  |  |  |
| 25         | $R_1$            | 219.85                        | 0.9953 | 200.11                                 | 0.9963 |  |  |  |  |
|            | $R_2$            | 238.69                        | 0.9960 | 217.24                                 | 0.9970 |  |  |  |  |
|            | $R_3$            | 245.22                        | 0.9963 | 223.18                                 | 0.9972 |  |  |  |  |
|            | $F_1$            | 258.64                        | 0.9967 | 235.39                                 | 0.9975 |  |  |  |  |
|            | $F_2$            | 82.04                         | 0.9995 | 74.60                                  | 0.9996 |  |  |  |  |
|            | $F_3$            | 164.08                        | 0.9995 | 149.20                                 | 0.9996 |  |  |  |  |
| 35         | $R_1$            | 228.20                        | 0.9970 | 197.78                                 | 0.9961 |  |  |  |  |
|            | $R_2$            | 247.71                        | 0.9976 | 214.72                                 | 0.9968 |  |  |  |  |
|            | $R_3$            | 254.47                        | 0.9978 | 220.58                                 | 0.9970 |  |  |  |  |
|            | $F_1$            | 268.38                        | 0.9981 | 232.65                                 | 0.9974 |  |  |  |  |
|            | $F_2$            | 84.96                         | 0.9990 | 73.75                                  | 0.9997 |  |  |  |  |
|            | $F_3$            | 169.91                        | 0.9990 | 147.50                                 | 0.9997 |  |  |  |  |
| 45         | $R_1$            | 290.40                        | 0.9953 | 226.21                                 | 0.9976 |  |  |  |  |
|            | $R_2$            | 315.30                        | 0.9961 | 245.54                                 | 0.9982 |  |  |  |  |
|            | $R_3$            | 323.92                        | 0.9963 | 252.24                                 | 0.9983 |  |  |  |  |
|            | $F_1$            | 341.66                        | 0.9967 | 266.03                                 | 0.9986 |  |  |  |  |
|            | $F_2$            | 108.40                        | 0.9998 | 84.17                                  | 0.9991 |  |  |  |  |
|            | $F_3$            | 216.79                        | 0.9998 | 168.34                                 | 0.9991 |  |  |  |  |

 TABLE XI

 Activation Energies Obtained Using Horowitz–Metzger Method for  $R_n$  and  $F_n$  Solid-State Processes at Different Heating Rates

Van Krevelen activation energy was obtained through a linear fitting of log  $\alpha$  versus log *T* plots. Table X shows activation energies and correlation values for  $R_n$  and  $F_n$  mechanisms by using the Van Krevelen model, at different constant heating rate values, for the two systems with diluent.

Table XI shows activation energies and correlations obtained by using  $R_n$  and  $F_n$  mechanisms and the Horowitz and Metzger model<sup>13</sup> that uses  $\ln g(\alpha)$  versus  $(T - T_r)$  plots. The use of these two methods confirms that the thermodegradation mechanisms followed by the epoxy systems studied are  $R_n$  or  $F_n$  type but it does not supply further information about a particular mechanism.

Finally, to corroborate that our epoxy systems follow a deceleratory thermodegradation mechanism, we have used the method proposed by Criado et al. This method uses reference theoretical curves called master plots, which are compared to experimental data. Experimental results were obtained from eq. (6) at the heating rates of 35 and 45°C/min.

Figure 2(a, b) shows master curves and experimental results corresponding to the systems with diluent, at heating rates of 35 and  $45^{\circ}$ C min<sup>-1</sup>, respectively. As expected, experimental results depend on the heating rate. This fact is more pronounced for the system with nonstoichiometric diluent proportion. Figure 2(a) suggests that the mechanisms better describing the thermodegradation behavior of both stoichiometric and nonstoichiometric systems at  $35^{\circ}$ C/min correspond to  $R_2$ ,  $R_3$ , or  $F_1$ . However, Figure 2(b) shows that at  $45^{\circ}$ C/min both systems show differences in their thermodegradation behavior, as the nonstoichiometric system follows a  $F_3$  type, whereas the mechanism followed by the stoichiometric system is not well defined.

Analysis of Table XI shows that the activation energies obtained by using the different methods, at 35 and  $45^{\circ}$ C/min, are very different from those corresponding to a  $F_1$  mechanism that, because of this, should be rejected.

These results suggest that the thermodegradation kinetics followed by the systems studied correspond to a decelerated-type solid-state mechanism ( $R_2$ ,  $R_3$ , or  $F_3$ ). At the same time, the thermodegradation behavior depends on the heating rate.



**Figure 2** Master curve plots  $Z(\alpha)$  versus  $\alpha$ , for the DGEBA (n = 0)/1,2 DCH/15% VCHD (nonstoich.) and DGEBA (n = 0)/1,2 DCH/15% VCHD (stoich.) systems, (a) at 35°C/min and (b) 45°C/min.

#### CONCLUSION

The thermodegradation behavior of the epoxy system DGEBA (n = 0)/1,2 DCH modified with different concentrations of the reactive diluent VCHD was studied by TGA. Analysis of experimental results sug-

gests that in the conversion range studied, 20–35%, the reaction mechanism is somewhere between the different types of phase boundary controlled reaction and random nucleation with two nuclei on the individual particle.

#### References

- 1. Ellis, B. Chemistry and Technology of Epoxy Resins, 1st ed.; Blackie Academic: UK, 1993.
- 2. Núñez, L.; Fraga, F.; Fraga, L.; Rodríguez, J. A. J Therm Anal 1996, 47, 743.
- 3. Hatakeyama, T.; Quinn, F. X. Thermal Analysis: Fundamentals and Applications to Polymer Science; Ed.; Wiley: Chichester, UK, 1994.
- 4. Criado, J. M.; Málek, J.; Ortega, A. Thermochim Acta 1989, 147, 377.
- 5. Montserrat, S.; Málek, J.; Colomer, P. Thermochim Acta 1998, 313, 83.
- 6. Ma, S.; Hill, J. O.; Heng, S. J Therm Anal 1991, 37, 1161.
- 7. Sestak, J.; Berggren, G. Thermochim Acta 1971, 3, 1.
- 8. Kissinger, H. E. Anal Chem 1957, 29, 1702.
- 9. Flynn, J. H.; Wall, L. A. J Res Natl Bur Standards A, Phys Chem 1996, 70A, 487.

- 10. Ozawa, T. Bull Chem Soc, Jpn 1965, 38, 1881.
- 11. Coats, A. W.; Redfern, J. P. Nature 1965, 207, 290.
- 12. Van Krevelen, D. W.; Van Heerden, C.; Huntjons, F. J. Fuel 1951, 30, 253.
- 13. Horowitz, H. H.; Metzger, G. Anal Chem 1965, 35, 1464.
- 14. Senum, G. I.; Yang, K. T. J Therm Anal 1977, 11, 445.
- 15. Lee, H.; Neville, K. Handbook of Epoxy Resin; McGraw-Hill: New York, 1967.
- May, C. A. Epoxy Resins: Chemistry and Technology; Marcel Dekker: New York, 1988.
- Núñez, L.; Taboada, J.; Fraga, F.; Núñez, M. R. J Appl Polym Sci 1997, 66, 1377.
- Jiménez, A.; Berenguer, V.; López, J.; Sanchez, A. J Appl Polym Sci 1993, 50, 1565.
- 19. Ozawa, T.; Kato, T. J Therm Anal 1991, 37, 1299.
- Núñez, L.; Fraga, F.; Núñez, M. R.; Villanueva, M. Polymer 2000, 41, 4635.
- 21. Doyle, C. D. Nature 1965, 207, 240.